
IEEE TBANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 10, OCTOBER 1989 1597

Improving the Characteristics of Rectangular
Waveguide Branching by

Cylindrical Obstacles

ROLAND GESCHE, MEMBER, IEEE, AND STEPHAN RUSSENSCHUCK, MEMBER, IEEE

,41Mmcf--The scattering matrix of a transition between one or two

parallel rectangrdar wavegnides and a larger rectangular wavegnide which

contains two metaflic or dielectric cylinders is investigated by means of the

orthogonal expansion method. Mathematical programming is applied in

order to improve the characteristics. Reflection of a rectangular step

discontinuity can be rednced by 30 dB using metaffic or dielectric obsta-

cles. Using Teflon cylinders, coupfing of a transition can be reduced by 40

dB without debasing reflection. Physical interpretations are given with the

help of field patterns.

I. INTRODUCTION

R ECTANGULAR waveguide branching are used in

many microwave applications. Mode-coupling struc-

tures which are used in satellite stabilization systems are

discussed in [1] and [2], while multimode antenna sources

and mode selectors are discussed in [3]. The quality of

these structures is dependent on the reflection coefficients

in the feeding waveguides and the coupling coefficients

between adjoining transmitting and receiving waveguides.

It is possible to minimize the scattering coefficients by

placing cylindrical obstacles near the waveguide inhomo-

geneities.

In this paper, the structure shown in Fig. 1 is investi-

gated considering the following restrictions:

●

●

●

●

●

●

incident fields are TE~O modes;

the axes of the cylindrical obstacles are parallel to

the electric field vector;

the obstacles are made of ideal conducting materials

or of lossy dielectric materials which are linear, ho-

mogeneous, and isotropic;

the obstacles extend over the entire waveguide height;

the axes of both obstacles are placed in the same

cross section of the larger waveguide; and

all waveguide walls are ideally conducting.

By means of the orthogonal expansion method

scattering parameters are determined in a reliable

Manuscript receivedJuly 27. 1987; revisedADtil 18, 1989.

[4], the

way.

R. Gesch; is with Leyb~ld AG, Siemensstr. 100, 8755 Alzenau, West
Germany.

S. Russenschuck is with the Institute of Electrical Energy Conversion,
Techuical University of Darmstadt, 6100 Darmstadt, West Germany.

IEEE Log Number 8929896.

Fig. 1. Waveguide branching with two cylindrical obstacles.

II. MATHEMATICAL METHOD

The investigation of the present structure as shown in

Fig. 2 is done in three steps:

A) investigation of the rectangular waveguide branch-

ing without obstacles;

B) investigation of the scattering by two cylindrical

obstacles in a rectangular waveguide; and

C) determination of the scattering matrix of the com-

plete structure by combination of the scattering

matrices from A) and B).

The mathematical formulations of these three steps are

described in [4]–[9]. Therefore, a summation of the main

equations will be given in this paper. The structure is

divided into four waveguide regions, WI –W4, as shown in

Fig. 2 indicated by the indices (l)-(4). In each region, the

fields of the incident TE~O mode and all scattered fields

are independent of z and can be derived from a vector

potential:

(1)
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Fig. 2 GeometW of the investigated structure,

Using (7) and (8), (5) and (6) yield

[i:: ? ;:I”EI

‘1::: ? :1”[

K(’) = diag(k~~,).— (9)

A. Waveguide Branching Without Obstacles
The scattering matrix can be calculated from (9):

The scattering problem of a branching of three rectangu-

lar waveguides can be solved by the orthogonal expansion

method described in [4]. Special formulations for the

present problem are given in [3] and [5]. The following

abbreviations are introduced:

7(3)

jll) 1 (lo)
7(2)

1

I

–~ –g ‘1
3). ~ ~(u ()

— —

@(’)=g(l) sink~J(y– s(z)).
m (4)

The equation arising from the continuity condition for the

tangential electrical field component E= is multiplied by
@(3) and integrated over the surface x = O. Using the

or~hogonality relation, it follows that
B. Two Cylindrical Obstacles in a Rectangular Waveguide

~(3). G o
—

K(2) j
—

1[ 1

–1 f’(j
K(3). f7 K(1) O .
— — — — (11)
K(3). G o ~ (2)
— — — —

~ ~jl)~(’) + ‘(’’@;1)@~3) dy The investigation of the scattering of two cylindrical

~=1 ~(l) obstacles in a rectangular waveguide is described in [7] and

18] and can be omitted here:

(12)

The similar equation coming from the continuity condition

for the tangential magnetic field component HY is multi- ~2=[f ;,]~[f ~,] (13)
plied by @~l~ and @~2).After integration,

The coupling integrals are arranged in matrices:

1’= (%?)

G= (%P)
,(’) + h(2)@:3)@~)dy. (7)

‘mp = J(2)
The amplitudes are arranged in vectors:

7(’)=11 7(i)=[l-‘8)

~= diag [ e ‘Jk$3J1] transformation matrix (14)

~ is the scattering matrix from [8].

C. Combining the Scattering Matrices from A and B

The complete structure consists of the two discontinu-

ities A and B coupled by the rectangular waveguide region

W3. The amplitudes of the H-O modes in the coupling
waveguide combine the scattering matrices. Equation (10)

yields

;(3)

p)

7(2)

(15)

Equation (12) yields

Now the amplitudes of the coupling region W3 are elimi-
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Fig. 3. Structures to be o timized. (a) Step discontinuity : !-z(l) = h =
!’ 1normalization length, S( ) = 2h, h(z) = O, J(2) = O, Ir( ) = h(4) = 5h.

(b) Waveguide branching: h(’)= h = normalization length, s(l) = 3.5h,
k@) = h S.(2)= 0,5h, h(3) = h(4) = 5h. The post size and location are to

be opti;ized. Symmetric structures with b2 = h(3) – bl, r2 = rl.

nated. It follows that

[]=[8 :1[] (17)

& ‘&c”& ‘&c”&a”(~ ‘82=”&=)-1”82a”&b
Sd ‘~2d”(E‘&.”&a) “82b (18)

where ~ is the unity matrix.

III. OPTIMIZATION

Because of the number of possible design variables, the

application of mathematical optimization algorithms is

recommended. Fig. 3 shows the two structures that are

discussed in the following.

A. Step Discontinuity

In the case of the step discontinuity (Fig. 3(a)), the

optimization problem is obvious:

minimize j(~) ZGR f: Rn+R (19)

subject to

with the set -of real numbers R, the objective function

~(~) = S,l( X), the vector o~ design variables ~=

(1, b,, r,) = R, the zero vector f?~,P, and the feasible do-

main

of X for which the nonequality constraints (20) are satis-

fied. In the particular case the feasible domain is given by

R= (i’e R310.25h<l<2h, lz<b1<4.75h,

0.02511< r,< 0.2+ (22)

A global minimum point @ ● R” is characterized by

As continuity, differentiability, and convexity of the

objective function cannot be determined because it is not

given analytically, the minimum conditions cannot be veri-

fied. The characteristic of nonconvex problems is the pos-

sibility of the appearance of multip [e minima. A minimum

found by an algorithm has therefore to be tested to deter-

mine whether it is global by using a number of starting

vectors. Because of the periodical structure of traveling

waves, multiple local minima in thla feasible domain have

been found. As the constraints are nonactive in the min-

ima, the optimization problem can be treated as an uncon-

strained optimization problem when the search is per-

formed from the inside of the feasible domain. The

published algorithms for nonlinear unconstrained mini-

mization problems [10]–[12] can be used, but efficiency

tests should be carried out for the optimization problems

presented, because the algorithms have a problem-depen-

dent efficiency [10]. As zeroth-order algorithms (search

algorithms), where only the objective function value is

desired, the

“ direct search method with unidimerisional Coggin

algorithm,

Q pattern search by Hooke and Jeeves,

● flexible polyhedron search by Nelder and Mead,

● algorithm EXTREM by Jacob,

“ Rosenbrock algorithm, and

“ Powell algorithm

have been chosen for testing, as well as the quasi-Newton

method established by Davidon-Fletcher Powell.

Quasi-Newton methods, also termed variable metric

methods, approximate the Hessien matrix but use informa-

tion only from first-order derivatives to do so.

Defining efficiency as a weighted function of criteria

such as convergence behavior (number of function evalua-

tions to find the minimum), robustness (success in obtain-

ing a solution without problem-clependent parameters),

accuracy, and user’s comfort (easy to program and to

apply), the quasi-Newton method, which shows a good

convergence when applied to mathematical test functions

such as the Rosenbrock function [1 O], loses its advantages

because the gradient of the objective function ‘has to be

approximated numerically by a difference quotient where

the spacing is computer and very much problem dependent

when ~ is covered with errors. The Nelder–Mead algo-

rithm performed rather poorly on our problem because it

had to be restarted after about every 20th cycle with a

different user-supplied length of the starting simplex.

In Fig. 4 the numbers of function evaluations dependent

on the logarithm of the difference between the objective

fqnction values at the actual and the minimum point,
X*= (1= 1.025h, bl = 3.775h, rl =: 0.068h) for the opti-

mization problem of a rectangular step discontinuity with

metallic posts are given for t~e different algorithms. The

starting vector is chosen as XO = (1 = 1.5h, bl = 4h, rl =

O.1~ ). The initial step in the search routines is chosen as

AX= O.l(lU – 1[, blU – bll, rlU – rll) where the subscripts u
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Fig. 4 Convergence behavior of optimization algorithms.

and 1 denote the upper and the lower bound of the design

variables.

Taking robustness and user comfort into consideration,

the Rosenbrock algorithm remains most efficient in the

present case. The results presented in Section IV are ob-

tained using this algorithm.

B. Waoeguide Branching

The rectangular waveguide branching (Fig. 3(b)) is an

optimization problem with two objectives where both re-

flection and transition should be minimized. These prob-

lems are called vector optimization problems (VOP’S):

minimize ~ (Z) FGR” f: R“~R’ (24)

subject to

F(1) < fl,n g: R“+R”’. (25)

In the investigated case the feasible domain is given by

R= {X~R310.25h <l<2h,3h<b1<4.75h,

0.025h < rl< 0.2h}. (26)

Characteristic of such problems is the appearance of an

objective conflict where the individual solutions for each

single objective function differ and no solution vector F

exists where both objectives gain their individual mini-

mum. In this case, solution points are defined as points

where the value of at least one objective function cannot

be reduced without increasing the functional values of the

other components. These solutions are called Pareto op-

tima [13].

A vector @ ● R is then and only then Pareto optimal or

function+al-efficient for the problem (24) if there exists no

vector X e R with

:(z) <~(l’”) Vi={l,. ... k}

and

~(:)<~(z”) foratleastonej~ {1,. ..,,k}. (27)

All vectors 2* being P~reto optimal build the Pareto

optimal solution set L ( X*). The decision maker has to

choose a compromise solution out of such a solution set.

With the preference relation s defined on L (read

7( ~1* ) S 1(~~ ) as 7( Z* ) is less preferred or indifferent

(28)

it can be proved [13] that there exists a pr~ference function++
p ( f( X)) with a unique solution ~ c L( X*) of the scalar-

ized substitute problem

minp($(~)) ZGR. (29)

Methods for transforming VOP’S into substitute prob-

lems have been developed such as the method of objective

weighting, the distance function method, and the min–max

formulation or the Marglin method. The Marglin method

transforms the VOP into a scalar substitute problem by

minimizing only one of the objective functions while re-

stricting the others with upper bounds. An efficient use of

this method requires effective constraint optimization algo-

rithms. In this paper the method of objective weighting is

used, defining a preference function

(30)

where

O< WJ<l and ZWJ=l (31)

are the weighting factors of the components of the objec-

tive function vector 7(~). To gain better sensitivity of the

weighting factors, the f,(~) are related to the components

of the function vector of the rectangular waveguide

branching without obstacles. The preference function used
in this paper reads

P(m) =o.7~+o.3m Islllo 1s2110

(32)

where Sll is the reflection coefficient in waveguide 1, and

Szl is the transition coefficient from waveguide 1 to 2. The

subscript O indicates the coefficients in the branching

without obstacles. In this case, the preference function

value is equal to 1; every lower value is an improvement.

IV. RESULTS

For the structures investigated in this section, the follow-

ing definitions are chosen. The small feeding waveguide of

the step discontinuity and the branching are chosen as an

R-1OO waveguide with the width h = 22.86 mm= 9/10 in.

The cutoff frequency of the fundamental TEIO mode is

6.56 GHz. Results are given in the frequency range 9.5-10.5

GHz. All dimensions are normalized with respect to the

waveguide height h. The larger waveguide has the width

511, so the investigated frequency range lies between the
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Fig. 5. Reflection coefficient of a symmetric rectangular waveguide step
discontinmty (Fig. 3(a)). a: without posts. b: with two metallic ~osts:

CI = cz = – ;CIJ,~1=r2= 0.068h, b, ~ 3.775h, bz =1.225h, [=l;025h,
h(4) = 5h. c: with two Teflon posts: c1 = (2 = 2.16., rl = r2 = 0.0835h,

bl= 3.105h, bz =1.895h, i= O.98h, h(4) = 5h.

(a)

(b)

(c)

Fig. 6. Magnetic field in the symmetric rectangular step discontinuity
from Fig. 3(a) and Fig. 5 at ~ = 9.84 GHz. (a) Without posts: ISII I =

– 25 dB. (b) With two metallic posts: ISIII = – 65 dB. (c) With two
Teflon posts: ISIII = – 55 dB.

cutoff frequencies of the TE70 mode (9.18 GHz) and the

TE80 mode (10.50 GHz) of the larger waveguide where

inhomogeneities of the scattering parameters occur.

A. Rectangular Waveguide Step Discontinuity

Fig. 5 shows frequency responses of the TEIO reflection

coefficient of a symmetric rectangular waveguide disconti-

nuity. It is obvious that reflection can be reduced by either

a—

--- --
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/

‘\ /
\
\ /’\ /
\ “sll’d B

-50”
c

1/ -- I ~,ldB

\
If
II
II

-60 s I
9.5 10 flGHz 10.5

Fig. 7. Reflection and coupling coefficients of a symmetric rectangular
waveguide branching. Weighting factors: a – c: W1 = 0.7, W2= 0.3;

d: WI= 0.99, W2= 0.01. a: without posts p(~( ~“)) =1. b: with two
metaflic posts: q = Cz = – Jm, rl = r? = 0.057h, bl = 2.8125h, bz =

2.1875k, /=1.15h, h(4) = 5h, p(~(fi)) = 0.71. c: with two Teflon

posts: cl = (z = 2.1c0, rl = r2= 0.084h, hi = 2.915/1, bz = 2.085h, I =

1.491h, h(4) = 5h, p(~( >)) = 0.7. d: with two asymmetric Teflon

posts: q =(2= 2.16., rl=O.llh, rz =0.191h, b,= 2.97}1, bz = 2.lh,

[=1.45h, h(4)= 5h, p(~(~”)) = 0.5.

metallic or dielectric posts placed in the large waveguide

near the discontinuity. The improvement of reflection be-

comes greater than 30 dB at 9.86 GHz. Dimensions for

optimal reflection coefficients are dependent on step height

and frequency. Teflon posts have to be placed closer to the

waveguide center.

Although the frequency responses of the metallic and

the dielectric post of Fig. 5 look similar, there are differ-

ences in the physical mechanism shown by the magnetic

fields (Fig. 6). In the feeding waveguide, the incoming

TEIO mode is dominant in all three cases. Differences are

shown by the fields in the large waveguide. The metallic

posts split a partial wave from the outward-traveling wave

to the transversal direction. This wave is reflected by the

waveguide walls and forms a standing wave. Interaction

between this standing wave and the outward-traveling

wave reduces reflection. The dielectric posts attract the

field, so the energy flow is concentrated in the center of

the waveguide. The field strength at the discontinuity walls

becomes small and the detachmerlt of the fields at the

corners is improved, so the reflecl.ion is reduced. In all

three cases, the amplitudes of the wave mixture in the large
waveguide are different.

B. Rectangular Waveguide Branching

Fig. 7 shows the frequency responses of the TEIO reflec-

tion and coupling coefficients in a symmetric waveguide

branching. With metallic posts, reflection can be reduced

in a small range, but the coupling increases. Better results

are obtained using Teflon posts. The curves show an

improvement of coupling with abcut constant reflection.

In other investigated cases, the reflection could be reduced

without increasing coupling.

Magnetic field patterns are showlm in Fig. 8. In the case

of metallic posts, coupling increases because-of the greater

fields near the discontinuity caused by the transversal
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(a)

(d)

Fig. 8. Magnetic field in the symmetric rectangular waveguide branch-
ing from Fig. 3(b) and Fig. 7 at ~ = 9.84 GHz. (a) Without posts:

/S,ll = -24 dB, 15211= -38 dB. (b) With two metallic posts: ISIII =
– 34 dB, IS21I = – 34 dB. (c) With two Teflon posts: ISIII = – 26 dB,
15,,1 = – 75 dB. (d) With two asymmetric Teflon posts: 15,11= – 35 dB,
IS211= –35 dB.

wave. Dielectric obstacles show a better detachment of

fields at the discontinuity. So the Teflon posts yield better

optimization results than the metallic posts.

V. CONCLUSIONS

As available computing power increases, the combina-

tion of the mode matching method and mathematical

programming leads to an effective method for optimizat-

ion of microwave devices. The method is demonstrated by

applying nonlinear unconstrained minimization techniques

to a rectangular step discontinuity with cylindrical obsta-

cles and by using objective weighting to transform the

vector optimization problem appearing in the case of the

rectangular waveguide branching.
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