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Improving the Characteristics of Rectangular
Waveguide Branchings by
Cylindrical Obstacles

ROLAND GESCHE, MEMBER, 1EEE, AND STEPHAN RUSSENSCHUCK, MEMBER, IEEE

Abstract —The scattering matrix of a transition between one or two
parallel rectangular waveguides and a larger rectangular waveguide which
contains two metallic or dielectric cylinders is investigated by means of the
orthogonal expansion method. Mathematical programming is applied in
order to improve the characteristics. Reflection of a rectangular step
discontinuity can be reduced by 30 dB using metallic or dielectric obsta-
cles. Using Teflon cylinders, coupling of a transition can be reduced by 40
dB without debasing reflection. Physical interpretations are given with the
help of field patterns.

I. INTRODUCTION

ECTANGULAR waveguide branchings are used in
many microwave applications. Mode-coupling struc-
tures which are used in satellite stabilization systems are
discussed in [1] and {2], while multimode antenna sources
and mode selectors are discussed in [3]. The quality of
these structures is dependent on the reflection coefficients
in the feeding waveguides and the coupling coefficients
between adjoining transmitting and receiving waveguides.
It is possible to minimize the scattering coefficients by
placing cylindrical obstacles near the waveguide inhomo-
geneities.
In this paper, the structure shown in Fig. 1 is investi-
gated considering the following restrictions:

incident fields are TE,,, modes;
the axes of the cylindrical obstacles are parallel to
the electric field vector;

& the obstacles are made of ideal conducting materials
or of lossy dielectric materials which are linear, ho-
mogeneous, and isotropic;

® the obstacles extend over the entire waveguide height;
the axes of both obstacles are placed in the same
cross section of the larger waveguide; and

® all waveguide walls are ideally conducting.

By means of the orthogonal expansion method [4], the
scattering parameters are determined in a reliable way.
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Waveguide branching with two cylindrical obstacles.

Fig. 1.

1. MATHEMATICAL METHOD

The investigation of the present structure as shown in
Fig. 2 is done in three steps:

A) investigation of the rectangular waveguide branch-
ing without obstacles;

B) investigation of the scattering by two cylindrical
obstacles in a rectangular waveguide; and

C) determination of the scattering matrix of the com-
plete structure by combination of the scattering
matrices from A) and B).

The mathematical formulations of these three steps are
described in [4]-[9). Therefore, a summation of the main
equations will be given in this paper. The structure is
divided into four waveguide regions, W1-W4, as shown in
Fig. 2 indicated by the indices (1)-(4). In each region, the
fields of the incident TE,,, mode and all scattered fields
are independent of z and can be derived from a vector
potential:

A = ADZ e FO =y x AW
EO=——(v x HO) (1)
Jweg
[o9]
AV =Y gWsink®(y— s(z)){frgz)efjk;'z,x + rrflt)eﬁk.i’,LX}
ym ¥
m=1
2
2 ma
g(l) = __'_h(x) k;;lpzl = h(l) kxm = m (3)
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Fig. 2 Geometry of the investigated structure.

A. Waveguide Branching Without Obstacles

The scattering problem of a branching of three rectangu-
lar waveguides can be solved by the orthogonal expansion
method described in [4]. Special formulations for the
present problem are given in [3] and [5]. The following
abbreviations are introduced:

) WPy

LY = (30410 M = (10 +r0) S,

Jwe

D =gWsinkl) (y—s®). (4)
The equation arising from the continuity condition for the
tangential electrical field component E, is multiplied by
@ and integrated over the surface x=0. Using the
orthogonality relation, it follows that

S 7 S0 1 ®)
Z Ln / (I)n ®m dy

n=1 s

had @ 4 5@
+ X LR T oo ay= LY. (5)
r=1 $

2)

The similar equation coming from the continuity condition
for the tangential magnetic field component H, is multi-
plied by ®{" and ®. After integration,
2]
Y MO [T e0em gy = MO
e 1 nt 5(1) m n n
S MO [P 0e0 @
XM e0ePdy = MO (o)
5

m=1

The coupling integrals are arranged in matrices:

_ (O EO o)
F ( Fnln) an '/;(1) ¢m (Dn dy
_ [P 1 p® )
G=(G,,) Qw—lm 2P0 dy. (7)

The amplitudes are arranged in vectors:

5
7(1) _ fz(l)

o

F(i)=| o |.

(8)
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Using (7) and (8), (5) and (6) yield

1 -F -G| |/
K®O.F KO 0 |-|7D
I_{(3).G 0 K® 7@

-1 F G 7O

=|k®F KO ¢ |.|f®

K®»G 0 K| |f®

K =diag (k).

Xm

The scattering matrix can be calculated from (9):

f® 70
FO =g .| FO (10)
7@ f@
-1
1 —F -G
S, = KG).F ]_((1) 0
K®.G 0 K®
-1 F G
KOF KO 0 | (11)
]_((3) G 0 K®

B. Two Cylindrical Obstacles in a Rectangular Waveguide

The investigation of the scattering of two cylindrical
obstacles in a rectangular waveguide is described in [7] and
[8] and can be omitted here:

73 73
f 7@
T 0 0
S=1_ ISl 1
=0 7o I‘l} 13

T=diag[e *¥!]  transformation matrix (14)

S is the scattering matrix from [8].

C. Combining the Scattering Matrices from A and B

The complete structure consists of the two discontinu-
ities A and B coupled by the rectangular waveguide region
W3. The amplitudes of the H,, modes in the coupling
waveguide combine the scattering matrices. Equation (10)
yields

- FE)

0 rs. su1ln

2o [ =70 Lo (15)
r .Slc _Sld —

7@ | f@

Equation (12) yields

POl S Su] [7e 6
f(4)_ | S5 S s '

Now the amplitudes of the coupling region W3 are elimi-
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Fig. 3. Structures to be optimized. (a) Step discontinuit pE WD =p =
normalization length, s®'=24#, D=0, s®=0, h® =p® =5},

(b) Waveguide branching: hD = h = normahzatmn length, sa) =3.5h,
h® =h, s@ =05k, B = h™ = 5h. The post size and location are to
be optimized. Symmetric structures with b, = h® ~ b, r,=r,.

nated. It follows that

2() F{s))
s s
7o | = | 7@ (17)
—>(4) .“Sc §d .
f 7@
S,=8,.-(E-SL:8L) '+,
S,=8,.(E-SL-ST) "8y,
S,=8:8,+8,8, (E—8,,8,)" ' 854 S1p
Sd =§2d‘(§ _§2a'§1a)'§2b (18)

where E is the unity matrix.

III. OPTIMIZATION

Because of the number of possible design variables, the
application of mathematical optimization algorithms is

recommended. Fig. 3 shows the two structures that are

discussed in the following.

A. Step Discontinuity

In the case of the stép discontinuity (Fig. 3(a)), the
optimization problem is obvious:
XeRr (19)

minimize f(X) fiR">R

subject to
g(X) <8,

g R">R" (20)

with the set_of real numbers R, the objective function

f( X ) = 85( X ), the vector of design variables X=
(1, by, 1) €R, the zero vector Bm »» and the feasible do-
main

R- (X emng(X) <7,

of X for which the nonequality constraints (20) are satis-
fied. In the particular case the feasible domain is given by

R={XeR0.25h <1<2h, h<b,<4.75h,

0.025h<r,<02h}. (22)

A global minimum point X*eR" is characterized by

() <f(X) VXeR.

(23)

(21) -
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As continuity, differentiability, and convexity of the
objective function cannot be determined because it is not
given analytically, the minimum conditions cannot be veri-
fied. The characteristic of nonconvex problems is the pos-
sibility of the appearance of multiple minima. A minimum
found by an algorithm has therefore to be tested to deter-
mine whether it is global by using a number of starting
vectors. Because of the periodical structure of traveling
waves, multiple local minima in the feasible domain have
been found. As the constraints are nonactive in the min-
ima, the optimization problem can be treated as an uncon-
strained optimization problem when the search is per-
formed from the inside of the feasible domain. The
published algorithms for nonlinear unconstrained mini-
mization problems [10]-{12] can be used, but efficiency
tests should be carried out for the optimization problems
presented, because the algorithms have a problem-depen-
dent efficiency [10]. As zeroth-order algorithms (search:
algorithms), where only the objective function value is
desired, the

e direct search method with unidimensional Coggin
algorithm,

pattern search by Hooke and Jeeves,

flexible polyhedron search by Nelder and Mead,
algorithm EXTREM: by Jacob,

Rosenbrock algorithm, and

Powell algorithm

have been chosen for testing, as well as the quasi-Newton
method established by Davidon-Fletcher Powell.

Quasi-Newton methods, also termed variable metric

methods, approximate the Hessien matrix but use informa-
tion only from first-order derivatives to do so.
- Defining efficiency as a weighted function of criteria
such as convergence behavior (number of function evalua-
tions to find the minimum), robustness (success in obtain-
ing a solution without problem-dependent parameters),
accuracy, and user’s comfort (easy to program and to
apply), the quasi-Newton method, which shows a good
convergence when applied to mathematical test functions
such as the Rosenbrock function [10], loses its advantages
because the gradient of the objective function has to be
approximated numerically by a difference quotient where
the spacing is computer and very much problem dependent
when f is covered with errors. The Nelder—Mead algo-
rithm performed rather poorly on our problem because it
had to be restarted after about every 20th cycle with a
different user-supplied length of the starting simplex.

In Fig. 4 the numbers of function evaluations dependent
on the logarithm of the difference between the objective
function values at the actual and the minimum point,
X*=(1=1.025h, b,=3.775h, r,=0.068h) for the opti-
mization problem of a rectangular step discontinuity with
metallic posts are given for the different algorithms. The
starting vector is chosen as XO— (l=1.5h, by=4h, r,=
0.1%). The initial step in the search routines is chosen as

AX=01(l,—1, b, bll, 1. — '1;) Where the ‘subscripts u
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Fig. 4 Convergence behavior of optimization algorithms.

and / denote the upper and the lower bound of the design
variables.

Taking robustness and user comfort into consideration,
the Rosenbrock algorithm remains most efficient in the
present case. The results presented in Section IV are ob-
tained using this algorithm.

B. Waveguide Branching

The rectangular waveguide branching (Fig. 3(b)) is an
optimization problem with two objectives where both re-
flection and transition shounld be minimized. These prob-
lems are called vector optimization problems (VOP’s):

minimize 7 (X) XeR" f:R">RF (24)

subject to
g(X) <@, g R">R". (25)
In the investigated case the feasible domain is given by
R={XeR3025h<1<2h,3h<b <4.75h,
0.025h < <0.2h}. (26)

Characteristic of such problems is the appearance of an
objective conflict where the individual solutions for each
single objective function differ and no solution vector X*
exists where both objectives gain their individual mini-
mum. In this case, solution points are defined as points
where the value of at least one objective function cannot
be reduced without increasing the functional values of the
other components. These solutions are called Pareto op-
tima [13].

A vector X* €R is then and only then Pareto optimal or
functional-efficient for the problem (24) if there exists no
vector X € R with

JAX)<[(X¥)  Vie(l- k)
and

Z()?)<Z(f*) for at least one j € {1,---,k}. (27)
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All vectors X* being Pareto optimal build the Pareto
optimal solution set L(X*). The decision maker has to
choose a compromise solution out of such a solution set.
With the preference relation < defined on L (read

f( )?1*) < f( )&72*) as f( )71*) is less preferred or indifferent
to f(X;*)) with

F(X¥)<7(X) vXxeeL

f(%2)=7 (%) and
FXF)<F(XF)~F (%) <7 (X5)

J (%)= f(Xz) and

F(%r)<T (%)~ (Xr)=7F (X)) (2

it can be proved [13] that there exists a preference function
p(f(X)) with a unique solution X € L(X*) of the scalar-
ized substitute problem

min p( /(X)) (29)
Methods for transforming VOP’s into substitute prob-
lems have been developed such as the method of objective
weighting, the distance function method, and the min-max
formulation or the Marglin method. The Marglin method
transforms the VOP into a scalar substitute problem by
minimizing only one of the objective functions while re-
stricting the others with upper bounds. An efficient use of
this method requires effective constraint optimization algo-
rithms. In this paper the method of objective weighting is
used, defining a preference function

p(7 (X)) =[ws(X)]

XeER.

(30)
where
0<w,<1 and Xw, =1

(31)
are the weighting factors of the components of the objec-
tive function vector f(X). To gain better sensitivity of the
weighting factors, the f (X) are related to the components
of the function vector of the rectangular waveguide
branching without obstacles. The preference function used
in this paper reads

o7 () =07 150 315

32
1S11lo 1Sa1o (2

where S;; is the reflection coefficient in waveguide 1, and
S, is the transition coefficient from waveguide 1 to 2. The
subscript 0 indicates the coefficients in the branching
without obstacles. In this case, the preference function
value is equal to 1; every lower value is an improvement.

IV. REsuLTS

For the structures investigated in this section, the follow-
ing definitions are chosen. The small feeding waveguide of
the step discontinuity and the branching are chosen as an
R-100 waveguide with the width 4 =22.86 mm =9,/10 in.
The cutoff frequency of the fundamental TE,, mode is
6.56 GHz. Results are given in the frequency range 9.5-10.5
GHz. All dimensions are normalized with respect to the
waveguide height /. The larger waveguide has the width
5h, so the investigated frequency range lies between the

+0.3
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Fig. 5. Reflection coefficient of a symmetric rectangular waveguide step
discontimuty (Fig. 3(a)). a: without posts. b: with two metallic posts:
€ =¢,=— joo, 1, =r,=0.068h, b =3.775h, b,=1.225h, [=1.025h,
h™ =5h. ¢: with two Teflon posts: ¢ =€, =2.1¢,, 1, =r, = 0.0835h,

b, =3.105h, b, =1.895h, [ =0.98h, h® = 5h,
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Fig. 6. Magnetic field in the symmetric rectangular step discontinuity
from Fig. 3(a) and Fig. 5 at f =9.84 GHz. (a) Without posts: |S;;|=
—25 dB. (b) With two metallic posts: |S;;] = —65 dB. (¢) With two
Teflon posts: |S);|=—55 dB.

cutoff frequencies of the TE,; mode (9.18 GHz) and the
TEg, mode (10.50 GHz) of the larger waveguide where
inhomogeneities of the scattering parameters occur.

A. Rectangular Waveguide Step Discontinuity

Fig. 5 shows frequency responses of the TE,, reflection
coefficient of a symmetric rectangular waveguide disconti-
nuity. It is obvious that reflection can be reduced by either

1601
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Fig. 7. Reflection and coupling coefficients of a symmetric rectangular
waveguide branching. Weighting factors: a—c: w; =07, w,=03;
d: wy=0.99, w, =0.01. a: without posts p(f(X*)=1. b: with two
metallic posts: € =€, =— joo, r,=r,=0.057h, b =2.8125h, b=
21875k, {=1.15k, h® =5k, p(F(X¥*) =0.71. ¢ with two Teflon
posts: € =€, =21¢,, r,=r,=0.084h, b, =2.915h, b, =2.085h, |=
1.491h, B =5h, p(?( X)) =07. d: with two asymmetric Teflon
posts: € =€, =21¢;, r,=011h, rnb=0.191h, b, =2.97h, by=2.1h,
[=1.45h, h =5k, p(f(X*) =0.5.

flGHz

metallic or dielectric posts placed in the large waveguide
near the discontinuity. The improvement of reflection be-
comes greater than 30 dB at 9.86 GHz. Dimensions for
optimal reflection coefficients are dependent on step height
and frequency. Teflon posts have to be placed closer to the
waveguide center. :

Although the frequency responses of the metallic and
the dielectric post of Fig. 5 look similar, there are differ-
ences in the physical mechanism shown by the magnetic
fields (Fig. 6). In the feeding waveguide, the incoming
TE,, mode is dominant in all three cases. Differences are
shown by the fields in the large waveguide. The metallic
posts split a partial wave from the outward-traveling wave
to the transversal direction. This wave is reflected by the
waveguide walls and forms a standing wave. Interaction
between this standing wave and the outward-traveling
wave reduces reflection. The dielectric posts attract the
field, so the energy flow is concentrated in the center of
the waveguide. The field strength at the discontinuity walls
becomes small and the detachment of the fields at the
corners is improved, so the reflection is reduced. In all
three cases, the amplitudes of the wave mixture in the large
waveguide are different.

B. Rectangular Waveguide Branching

Fig. 7 shows the frequency responses of the TE,; reflec-
tion and coupling coefficients in a symmetric waveguide
branching. With metallic posts, reflection can be reduced
in a small range, but the coupling increases. Better results
are obtained using Teflon posts. The curves show an
improvement of coupling with about constant reflection.
In other investigated cases, the reflection could be reduced
without increasing coupling.

Magnetic field patterns are shown in Fig. 8. In the case
of metallic posts, coupling increases because-of the greater
fields near the discontinuity caused by the transversal
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Fig. 8. Magnetic field in the symmetnc rectangular waveguide branch-
ing from Fig. 3(b) and Fig. 7 at f=9.84 GHz. (a) Without posts:
|S;1]= —24 dB, {S,;|=—38 dB. (b) With two metallic posts: |S};|=
—34 dB, |S,;| = —34 dB. (¢) With two Teflon posts: |S);|= —26 dB,
|S51| = —75 dB. (d) With two asymmetric Teflon posts: |S;;| = —35 dB,
S5, = — 35 dB.

wave. Dielectric obstacles show a better detachment of
fields at the discontinuity. So the Teflon posts yield better
optimization results than the metallic posts..

V. CONCLUSIONS

As available computing power increases, the combina-
tion of the mode matching method and mathematical
programming leads to an effective method for optimiza-
tion of microwave devices. The method is demonstrated by
applying nonlinear unconstrained minimization techniques
to a rectangular step discontinuity with cylindrical obsta-
cles and by using objective weighting to transform the
vector optimization problem appearing in the case of the
rectangular waveguide branching.
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